\qquad
Precalculus
Purpose: In this problem set, we will investigate end behaviors of rational functions. We will also explore polynomial long division, an important skill for analyzing end behavior of rational functions.

1. Review: Consider the rational function $f(x)=\frac{2 x^{2}+4 x+2}{(x+1)(x-3)}$.
(a) What is the domain of f ?
(b) If we stick to the domain of f, what is a simpler expression for f ?
(c) Does f have any vertical asymptotes? If so, where? What is the behavior of the graph of each side?
(d) Does f have any holes? If so, where? (Your answer here should be a point.)

Just like with polynomials, we want to know what happens to rational functions as we plug in bigger and bigger x values.

Similar to polynomials, the end behavior relies on the leading terms, but rational functions' end behavior relies on the ratio of the leading terms.

$$
\text { Let } f(x)=\frac{A(x)}{B(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

There are three cases to check:

- The degree of the numerator is less than the degree of the denominator $(n<m)$:
- The degree of the numerator is equal to the degree of the denominator $(n=m)$:
- The degree of the numerator is more than the degree of the denominator $(n>m)$:

2. Suppose $f(x)=\frac{3 x^{2}-4 x+5}{x^{3}+4 x^{2}-10}$. As $x \rightarrow \infty$, what does $f(x)$ tend to? As $x \rightarrow-\infty$, what does $f(x)$ tend to?
3. Suppose $f(x)=\frac{2 x^{3}-82 x}{-3 x^{3}+10 x^{2}-7}$. As $x \rightarrow \infty$, what does $f(x)$ tend to? As $x \rightarrow-\infty$, what does $f(x)$ tend to?
4. Polynomial long division note space:
5. Suppose $f(x)=\frac{2 x^{2}+3}{x+1}$. As $x \rightarrow \pm \infty$, what does $f(x)$ tend to?

Definition: The \qquad of a rational function is the line or polynomial that the rational function approaches in the long-run. When this feature is a line, we call it a
6. Use polynomial long division to simplify the following rational expression $\frac{x^{4}+3 x^{2}+x^{3}+2 x+2}{x^{2}+2}$.

Recap: Let

$$
f(x)=\frac{A(x)}{B(x)}=\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}}{b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{1} x+b_{0}}
$$

- If $n<m$, then as $x \rightarrow \infty, f(x) \rightarrow 0$, and as $x \rightarrow-\infty, f(x) \rightarrow 0$.
- If $n=m$, then as $x \rightarrow \infty, f(x) \rightarrow \frac{a_{n}}{b_{m}}$, and as $x \rightarrow-\infty, f(x) \rightarrow \frac{a_{n}}{b_{m}}$.
- If $n>m, f(x)$ has asymptotic behavior determined by polynomial long division and the same end behavior as the monomial, $\frac{a_{n}}{b_{m}} x^{n-m}$. In particular, if $n=m+1$, then $f(x)$ has an oblique (or slant) asymptote.

